sun | power VR L

Series OPzV/OPzV bloc

Valve regulated lead-acid batteries for cyclic applications

www.hoppecke-us.com
sun | power VR L Series OPzV

Typical applications:
- Village power supplies
- Hybrid systems
- Peak Shaving/voltage stabilisation
- Stations of mobile communications
- Sustainable tourism
- Cathodic corrosion protection
- Pumping systems

Your benefits:
- Maintenance-free regarding water refilling – due to innovative Gel-technology
- Very high cycle stability during PSoC\(^1\) operation – due to tubular plate design with efficient charge current acceptance
- Maximum compatibility – dimensions according to DIN 4074\(^2\)
- Optimal space utilization – due to possibility of horizontal arrangement\(^2\)
- Higher short-circuit safety even during the installation – based on HOPPECKE system connectors

sun | power VR L Series OPzV bloc

Typical applications:
- Solar home storage systems
- Hybrid systems
- Signalling systems
- Street lighting
- Stations of mobile communications
- Medical care facilities
- Cathodic corrosion protection

Your benefits:
- Maintenance-free regarding water refilling – due to innovative Gel-technology
- Very high cycle stability during PSoC\(^1\) operation – due to tubular plate design with efficient charge current acceptance
- Maximum compatibility – dimensions according to DIN 40744
- Easy assembly and installation – battery lid with integral handle
- Higher short-circuit safety even during the installation – based on HOPPECKE system connectors

Service life in cycles and Depth of Discharge

1. Partial State of Charge
2. Operating in a horizontal position is only possible with special variant. Please consider when ordering!
Capacities, dimensions and weights

<table>
<thead>
<tr>
<th>Series OPzV bloc</th>
<th>Nominal voltage V</th>
<th>$C_{65}^{1/185,\text{V} @ 25^\circ\text{C}/77^\circ\text{F}}$</th>
<th>$C_{65}^{1/185,\text{V} @ 20^\circ\text{C}/68^\circ\text{F}}$</th>
<th>$C_{65}^{1/203,\text{V} @ 25^\circ\text{C}/77^\circ\text{F}}$</th>
<th>$C_{65}^{1/203,\text{V} @ 20^\circ\text{C}/68^\circ\text{F}}$</th>
<th>Weight kg</th>
<th>max.* Length L mm</th>
<th>max.* Width W mm</th>
<th>max.* Height H mm</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>12-70</td>
<td>12</td>
<td>298</td>
<td>287</td>
<td>243</td>
<td>204</td>
<td>210</td>
<td>18.3</td>
<td>40.3</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>12-120</td>
<td>12</td>
<td>373</td>
<td>359</td>
<td>304</td>
<td>255</td>
<td>262</td>
<td>22.3</td>
<td>49.1</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>12-180</td>
<td>12</td>
<td>456</td>
<td>446</td>
<td>366</td>
<td>304</td>
<td>323</td>
<td>29.1</td>
<td>60.9</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-250</td>
<td>6</td>
<td>1029</td>
<td>990</td>
<td>888</td>
<td>796</td>
<td>806</td>
<td>61.3</td>
<td>135.1</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-300</td>
<td>6</td>
<td>1175</td>
<td>1130</td>
<td>1016</td>
<td>909</td>
<td>931</td>
<td>65.9</td>
<td>145.3</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-670</td>
<td>6</td>
<td>1231</td>
<td>1271</td>
<td>1143</td>
<td>1023</td>
<td>1047</td>
<td>75.6</td>
<td>166.7</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-1125</td>
<td>6</td>
<td>1468</td>
<td>1412</td>
<td>1270</td>
<td>1137</td>
<td>1163</td>
<td>80.5</td>
<td>177.5</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-250</td>
<td>6</td>
<td>1615</td>
<td>1553</td>
<td>1397</td>
<td>1250</td>
<td>1280</td>
<td>89.3</td>
<td>196.9</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-500</td>
<td>6</td>
<td>1762</td>
<td>1695</td>
<td>1524</td>
<td>1364</td>
<td>1396</td>
<td>94.6</td>
<td>208.6</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-1750</td>
<td>6</td>
<td>2033</td>
<td>1955</td>
<td>1785</td>
<td>1545</td>
<td>1604</td>
<td>110.0</td>
<td>242.5</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-2800</td>
<td>6</td>
<td>2372</td>
<td>2282</td>
<td>2082</td>
<td>1802</td>
<td>1871</td>
<td>136.5</td>
<td>300.9</td>
</tr>
<tr>
<td>sun</td>
<td>power VR L</td>
<td>6-3500</td>
<td>6</td>
<td>2582</td>
<td>2506</td>
<td>2306</td>
<td>2006</td>
<td>2139</td>
<td>152.9</td>
<td>337.1</td>
</tr>
</tbody>
</table>

$C_{65}, C_{65}, C_{65}, C_{65},$ and C_{65} = Capacity at 100 h, 50 h, 24 h, 10 h, and 8 h discharge

* according to DIN 40742 data to be understood as maximum values

Fig. A Series OPzV bloc

Fig. B Series OPzV bloc

Fig. C Series OPzV

Fig. D Series OPzV

Fig. E Series OPzV

Fig. F Series OPzV

Optimal environmental compatibility – closed loop for recovery of materials in an accredited recycling system

IEC 60896-21 · IEC 61427
Specifications:

Plate construction:
Positive plate: tubular (0.35” thick), Negative plate: flat plate design, (0.18” thick), both are lead-calcium alloy

Separators:
Microporous PVC free

Intercell connections:
Fully insulated copper cable connectors, “dead top design”

Electrolyte:
GEL - Sulfuric acid specific gravity 1.270 kg/l

Jar & Lid:
Lid is halogen free ABS, UL94-HB. Optional UL94-V0.
Jar is halogen free ABS, UL94-HB. Optional UL94-V0

Terminal post:
HOPPECKE molded corrosion free sliding pole terminal with M8 brass insert. Terminal Screw Torque: 20 Nm / 177 in-lbs

Relief valve:
Flashback protected pressure relief valve, 1 psi ± 30%

Charging:
Float voltage: 2.25 Vpc ± 1%,
Equalize voltage: 2.35 - 2.40 Vpc,
Charge current: 20 A/100 Ah typical

Designed in accordance with:
Tested in accordance with IEC 60896-21/22, Design DIN 40742